p-group, metabelian, nilpotent (class 3), monomial
Aliases: C24.117D4, C4.Q8⋊9C22, (C2×C8).34C23, C2.D8⋊20C22, C4⋊C4.392C23, C22⋊C8⋊11C22, C24.4C4⋊9C2, (C2×C4).292C24, (C2×D4).81C23, C23.243(C2×D4), (C22×C4).443D4, D4⋊C4⋊20C22, C22.D8⋊12C2, C23.46D4⋊2C2, M4(2)⋊C4⋊24C2, C42⋊C2⋊79C22, C4⋊D4.157C22, C23.37D4⋊10C2, C23.19D4⋊13C2, C22.46(C8⋊C22), (C23×C4).562C22, C22.552(C22×D4), C2.23(D8⋊C22), (C22×C4).1008C23, C4.99(C22.D4), (C22×D4).359C22, (C2×M4(2)).74C22, C22.64(C22.D4), C4.102(C2×C4○D4), (C2×C4).487(C2×D4), C2.29(C2×C8⋊C22), (C2×C4⋊C4)⋊118C22, (C2×C4⋊D4).58C2, (C2×C42⋊C2)⋊47C2, (C2×C4).487(C4○D4), C2.57(C2×C22.D4), SmallGroup(128,1826)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C2 — C4 — C2×C4 — C22×C4 — C42⋊C2 — C2×C42⋊C2 — C24.117D4 |
Generators and relations for C24.117D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=f2=1, e4=d, ab=ba, eae-1=faf=ac=ca, ad=da, bc=cb, ebe-1=bd=db, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=cde3 >
Subgroups: 492 in 231 conjugacy classes, 94 normal (28 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C24, C24, C22⋊C8, D4⋊C4, C4.Q8, C2.D8, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C42⋊C2, C4⋊D4, C4⋊D4, C2×M4(2), C23×C4, C22×D4, C22×D4, C24.4C4, C23.37D4, M4(2)⋊C4, C22.D8, C23.46D4, C23.19D4, C2×C42⋊C2, C2×C4⋊D4, C24.117D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22.D4, C8⋊C22, C22×D4, C2×C4○D4, C2×C22.D4, C2×C8⋊C22, D8⋊C22, C24.117D4
(1 10)(2 29)(3 12)(4 31)(5 14)(6 25)(7 16)(8 27)(9 22)(11 24)(13 18)(15 20)(17 30)(19 32)(21 26)(23 28)
(1 23)(2 20)(3 17)(4 22)(5 19)(6 24)(7 21)(8 18)(9 31)(10 28)(11 25)(12 30)(13 27)(14 32)(15 29)(16 26)
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 27)(10 28)(11 29)(12 30)(13 31)(14 32)(15 25)(16 26)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(2 22)(3 7)(4 20)(6 18)(8 24)(9 11)(10 28)(12 26)(13 15)(14 32)(16 30)(17 21)(25 31)(27 29)
G:=sub<Sym(32)| (1,10)(2,29)(3,12)(4,31)(5,14)(6,25)(7,16)(8,27)(9,22)(11,24)(13,18)(15,20)(17,30)(19,32)(21,26)(23,28), (1,23)(2,20)(3,17)(4,22)(5,19)(6,24)(7,21)(8,18)(9,31)(10,28)(11,25)(12,30)(13,27)(14,32)(15,29)(16,26), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,25)(16,26), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,22)(3,7)(4,20)(6,18)(8,24)(9,11)(10,28)(12,26)(13,15)(14,32)(16,30)(17,21)(25,31)(27,29)>;
G:=Group( (1,10)(2,29)(3,12)(4,31)(5,14)(6,25)(7,16)(8,27)(9,22)(11,24)(13,18)(15,20)(17,30)(19,32)(21,26)(23,28), (1,23)(2,20)(3,17)(4,22)(5,19)(6,24)(7,21)(8,18)(9,31)(10,28)(11,25)(12,30)(13,27)(14,32)(15,29)(16,26), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,27)(10,28)(11,29)(12,30)(13,31)(14,32)(15,25)(16,26), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (2,22)(3,7)(4,20)(6,18)(8,24)(9,11)(10,28)(12,26)(13,15)(14,32)(16,30)(17,21)(25,31)(27,29) );
G=PermutationGroup([[(1,10),(2,29),(3,12),(4,31),(5,14),(6,25),(7,16),(8,27),(9,22),(11,24),(13,18),(15,20),(17,30),(19,32),(21,26),(23,28)], [(1,23),(2,20),(3,17),(4,22),(5,19),(6,24),(7,21),(8,18),(9,31),(10,28),(11,25),(12,30),(13,27),(14,32),(15,29),(16,26)], [(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,27),(10,28),(11,29),(12,30),(13,31),(14,32),(15,25),(16,26)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(2,22),(3,7),(4,20),(6,18),(8,24),(9,11),(10,28),(12,26),(13,15),(14,32),(16,30),(17,21),(25,31),(27,29)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 4A | ··· | 4F | 4G | ··· | 4O | 4P | 4Q | 8A | 8B | 8C | 8D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | 4 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 8 | 8 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 | C8⋊C22 | D8⋊C22 |
kernel | C24.117D4 | C24.4C4 | C23.37D4 | M4(2)⋊C4 | C22.D8 | C23.46D4 | C23.19D4 | C2×C42⋊C2 | C2×C4⋊D4 | C22×C4 | C24 | C2×C4 | C22 | C2 |
# reps | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 1 | 1 | 3 | 1 | 8 | 2 | 2 |
Matrix representation of C24.117D4 ►in GL6(𝔽17)
13 | 15 | 0 | 0 | 0 | 0 |
16 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 4 | 0 | 0 |
0 | 0 | 9 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 4 |
0 | 0 | 0 | 0 | 9 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
4 | 0 | 0 | 0 | 0 | 0 |
1 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 15 | 1 |
0 | 0 | 16 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
13 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 16 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 15 | 1 |
G:=sub<GL(6,GF(17))| [13,16,0,0,0,0,15,4,0,0,0,0,0,0,13,9,0,0,0,0,4,4,0,0,0,0,0,0,13,9,0,0,0,0,4,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[4,1,0,0,0,0,0,13,0,0,0,0,0,0,0,0,16,0,0,0,0,0,1,1,0,0,16,15,0,0,0,0,0,1,0,0],[1,13,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,16,16,0,0,0,0,0,0,16,15,0,0,0,0,0,1] >;
C24.117D4 in GAP, Magma, Sage, TeX
C_2^4._{117}D_4
% in TeX
G:=Group("C2^4.117D4");
// GroupNames label
G:=SmallGroup(128,1826);
// by ID
G=gap.SmallGroup(128,1826);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,758,100,2019,248,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=f^2=1,e^4=d,a*b=b*a,e*a*e^-1=f*a*f=a*c=c*a,a*d=d*a,b*c=c*b,e*b*e^-1=b*d=d*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=c*d*e^3>;
// generators/relations